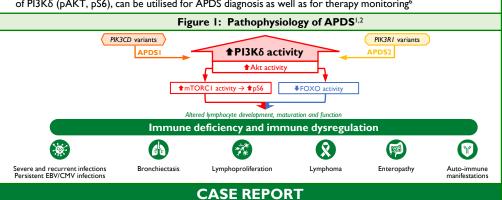


Rapid clinical and immunological improvement of persistent lymphoproliferative disease in a patient with activated PI3K delta syndrome (APDSI)

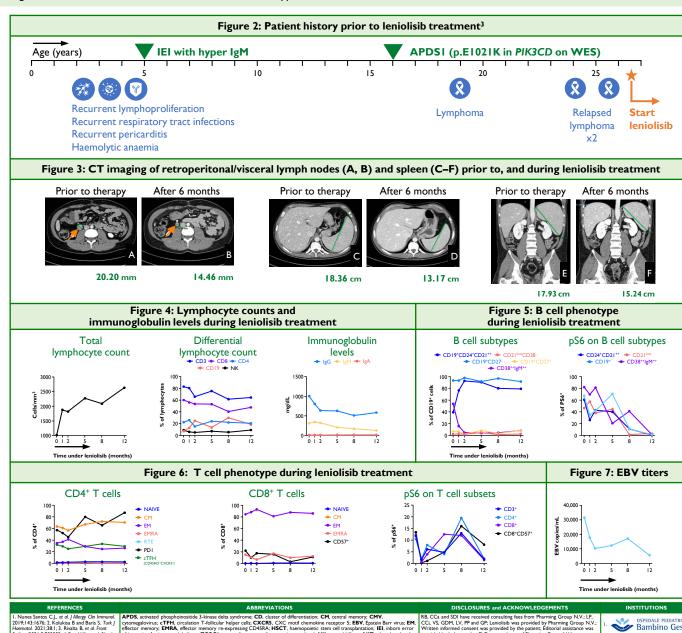
Beatrice RIVALTA¹; Silvia DI CESARE^{1,2}; Lucia PACILLO¹; Cristina CIFALDI^{1,2}; Gigliola DI MATTEO^{1,2}; Luciana VINTI¹; Paolo PALMA^{1,2}; Giuseppe PALUMBO^{1,2}; Veronica SANTILLI¹; and Caterina CANCRINI^{1,2}


Pediatr. 2021:9:703853: 4. Rao V.K., et al. Blood.

nmunol 2024:153:265: 6. Del Pino-Molina L. et

Cytometry B Clin Cytom. 2021:100:460

BACKGROUND


- APDS1 is a rare IEI caused by gain-of-function mutations in the PIK3CD gene encoding the PI3K δ catalytic subunit, leading to PI3K δ hyperactivity (Fig 1) 1,2
 - This affects lymphocyte development, maturation and function, causing immune deficiency and immune dysfunction, which manifests (often from early childhood) as severe/recurrent infections, persistent EBV/CMV infection, and autoimmune and lymphoproliferation manifestations, with an increased risk of lymphoma over time
- The immunological profile of APDS is characterised by hypogammaglobulinemia with increased IgM, poor response to polysaccharide antigens, and accumulation of transitional B cells and senescent T/NK cells¹⁻³
- Recently, clinical trials have demonstrated the efficacy of specific PI $3K\delta$ inhibitors to treat APDS^{4,5}
- · Non-standardised, functional tests, assessing the activation status (phosphorylation) of proteins downstream of PI3K δ (pAKT, pS δ), can be utilised for APDS diagnosis as well as for the rapy monitoring δ

- Here, we present a male patient with APDSI and a history of lymphoma, treated with leniolisib, an investigational specific PI3Kδ inhibitor
- The patient history prior to starting leniolisib is summarised in Fig 2.3 At 26 years old, lacking a compatible donor for HSCT, the patient started therapy with leniolisib 70 mg bid, through an early access programme
- At 12 months follow-up, he showed a clinical improvement with a reduction in chronic fatigue, infectious episodes and clinically assessable lymphadenopathies – abdominal CT images, taken immediately prior to and after 6 months of therapy, are shown in Fig 3
- Over the 12 months of follow-up, laboratory tests showed:
 - An increase in total lymphocytes and a decrease in IgM (Fig 4)
 - A decrease in CD38⁺⁺IgM⁺⁺ transitional B cells with an increase in mature CD21⁺CD24⁺ B cells (Fig 5)
 - A progressive decrease in phosphorylation of S6 (pS6), more evident in B-cell subsets (Fig 5). At 8 months, he exhibited a temporary rise in pS6 levels during an episode of urticaria
 - No significant improvements in T-cell phenotype (Fig 6)
 - A decrease in EBV viral replication from 31,570 to 17,101 copies/ml (Fig 7)

SUMMARY

- Leniolisib proved to be well-tolerated and effective in a patient with APDSI
- Future follow-up will allow assessment of the long-term effectiveness of this treatment, including immunological parameters, and will enable the standardisation of markers (such as pS6) for diagnosis and follow-up

omegalovirus; cTFH, circulation T-follicular helper cells; CXCR5, CXC motif chemokine receptor 5; EBY, Epstein Barr virus; EM, ctor memory; EMRA, effector memory re-expressing CD45RA; HSCT, haemopoietic stem cell transplantation; IEI, inborn error

of immunity; Ig. immunoglobulin; mTORCI, mammalian target of rapamycin complex I; NK, natural killer; pAKT, phosphorylated AKT/protein kinase B; PI3K8, phosphoinositide 3-kinase delta; pS6, phosphorylated S6 ribosomal protein; RTE, recent thymic

emigrants; WES, whole exome sequencing

CCi, VS, GDM, LV, PP and GP; Leniolisib was provided by Pharming Group N.'
Written informed consent was provided by the patient; Editorial assistance was

provided by Io Luscombe, PhD, an employee of Pharming Group N.V.

OSPEDALE PEDIATRIC

Bambino Gesù

TOR VERGATA